Body saccades of Drosophila consist of stereotyped banked turns.
نویسندگان
چکیده
The flight pattern of many fly species consists of straight flight segments interspersed with rapid turns called body saccades, a strategy that is thought to minimize motion blur. We analyzed the body saccades of fruit flies (Drosophila hydei), using high-speed 3D videography to track body and wing kinematics and a dynamically scaled robot to study the production of aerodynamic forces and moments. Although the size, degree and speed of the saccades vary, the dynamics of the maneuver are remarkably stereotypic. In executing a body saccade, flies perform a quick roll and counter-roll, combined with a slower unidirectional rotation around their yaw axis. Flies regulate the size of the turn by adjusting the magnitude of torque that they produce about these control axes, while maintaining the orientation of the rotational axes in the body frame constant. In this way, body saccades are different from escape responses in the same species, in which the roll and pitch component of banking is varied to adjust turn angle. Our analysis of the wing kinematics and aerodynamics showed that flies control aerodynamic torques during the saccade primarily by adjusting the timing and amount of span-wise wing rotation.
منابع مشابه
A comparison of visual and haltere-mediated feedback in the control of body saccades in Drosophila melanogaster.
The flight trajectories of fruit flies consist of straight flight segments interspersed with rapid turns called body saccades. Although the saccades are stereotyped, it is not known whether their brief time course is due to a feed-forward (predetermined) motor program or due to feedback from sensory systems that are reflexively activated by the rapid rotation. Two sensory modalities, the visual...
متن کاملSaccadic body turns in walking Drosophila
Drosophila melanogaster structures its optic flow during flight by interspersing translational movements with abrupt body rotations. Whether these "body saccades" are accompanied by steering movements of the head is a matter of debate. By tracking single flies moving freely in an arena, we now discovered that walking Drosophila also perform saccades. Movement analysis revealed that the flies se...
متن کاملBumblebee Homing: The Fine Structure of Head Turning Movements
Changes in flight direction in flying insects are largely due to roll, yaw and pitch rotations of their body. Head orientation is stabilized for most of the time by counter rotation. Here, we use high-speed video to analyse head- and body-movements of the bumblebee Bombus terrestris while approaching and departing from a food source located between three landmarks in an indoor flight-arena. The...
متن کاملVisual stimulation of saccades in magnetically tethered Drosophila.
Flying fruit flies, Drosophila melanogaster, perform ;body saccades', in which they change heading by about 90 degrees in roughly 70 ms. In free flight, visual expansion can evoke saccades, and saccade-like turns are triggered by similar stimuli in tethered flies. However, because the fictive turns in rigidly tethered flies follow a much longer time course, the extent to which these two behavio...
متن کاملThe Initiation and Control of Rapid Flight Maneuvers in Fruit Flies1
SYNOPSIS. Fruit flies alter flight direction by generating rapid, stereotyped turns, called saccades. The successful implementation of these quick turns requires a well-tuned orchestration of neural circuits, musculo-skeletal mechanics, and aerodynamic forces. The changes in wing motion required to accomplish a saccade are quite subtle, as dictated by the inertial dynamics of the fly’s body. A ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 218 Pt 6 شماره
صفحات -
تاریخ انتشار 2015